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Abstract
We describe an algorithm for independent motion detec-

tion from video sequences recorded from a camera moving
in a 3D rich environment. Such sequences are typical in
the case of Unmanned Aerial Vehicles flying at low alti-
tude over varied terrain and also for ground vehicles. We
present detection results for both scenarios.

1 Introduction
We are addressing the problem of detecting moving ob-

jects on the ground from video sequences recorded from
a low-flying Unmanned Aerial Vehicle (UAV) over terrain
that could have significant 3D structure. The goal is to de-
tect independently moving objects and transmit their loca-
tion (in UTM coordinates) to an Operator Control Station
on the ground in real time.

Moving Target Indication (MTI) from a moving vehicle
has been previously demonstrated using global parametric
transformations for stabilizing the background. These tech-
niques fail in situations in which static 3D structure in the
scene displays significant parallax motion (such as video
captured from a low flying UAV or from a moving ground
vehicle).

For a low flying UAV, the parallax induced by the 3D
structure on the ground cannot be ignored. The approach
should be able to distinguish between image motion due to
parallax and the one due to independently moving objects.

Large field of view (FOV) is desirable in order to be
able to cover a large footprint on the ground, particularly
given the low altitude of the camera. The ability to handle
unrestricted camera motion is also desirable.

A practical algorithm needs to be able to handle the full
range of natural environments, from planar scenes to ones
with sparse 3D parallax and up to scenes with dense 3D
parallax. The algorithm needs to determine the current sce-
nario and use the model with the appropriate degrees of
freedom (using an unnecessarily complex model leads to
overfitting and unstable results).

Figure 1 illustrates the concept of operation for the aerial
MTI scenario. On the left is the camera view with the mov-
ing targets indicated by the green bounding boxes. Once
moving targets have been detected in the image, they can
be projected on a map, as shown on the right of the figure.
The camera footprint on the ground is marked in yellow

and the location of the moving targets indicated by red cir-
cles. The transformation from camera view to map view is
determined using the helicopter navigational data, camera
calibration information and a terrain elevation map. This
scenario can be included in a larger air-ground cooperation
scenario, in which moving targets on the ground are de-
tected from an air vehicle, their location is reported to a
Command and Control center which can dispatch a ground
vehicle to a suitable observation point for additional verifi-
cation of the target.

We describe a real-time system that detects and tracks
independently moving objects under these conditions. The
system uses previously developed and new algorithms to
provide detection of moving targets on the ground from a
low-flying UAV. These algorithms provide robust and sen-
sitive MTI in conditions ranging from low or zero platform
motion (i.e. hovering) to rapid platform motion with ro-
tation. They also cover the range of scene conditions from
relatively flat to rough terrain with large amounts of motion
parallax. The MTI application runs on a PC-104 computer
on-board the CMU RMAX helicopter.

The same MTI algorithm can be used in ground vehicle
applications, e.g. for situational awareness in an armored
patrol in urban terrain, where the goal is to provide the user
with a continuous 360 degrees view with the hatch closed,
and detect moving and pop-up threads while the vehicle
is moving. To illustrate this concept, we have tested the
algorithm on sequences collected from a ground vehicle,
and we present sample results.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work in the area of moving tar-
get detection from a moving platform. Section 3 describes
the algorithm used and the implementation on the PC-104
computer. Section 4 shows results on several sequences
recorded from a low-flying helicopter as well as ground-
level vehicles. We conclude and discuss future work in
section 5.

2 Related Work
The problem of moving target indication from a mov-

ing platform has been a very active research area in com-
puter vision. The main challenge is to differentiate between
the image motion induced by the camera moving through
a static environment and that generated by independently
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Figure 1: Example of Moving Target Detection. Left: one frame from helicopter sequence; moving targets are indicated by
green bounding rectangles. Right: Detections located on an aerial image of the same area. The camera footprint on the ground is
indicated by the yellow polygon; red circles indicate the location of the two moving targets. MTI output for this frame. See text for
details.

moving objects.
MTI algorithms can be broadly classified based on the

method used to compensate for the camera motion into 2D
and 3D algorithms. 2D algorithms assume that a global
parametric transformation can align the static background
over multiple frames. This is true if the camera motion is a
pure rotation (e.g. for a pan-tilt camera on a fixed mount), if
the scene is predominantly planar or if the amount of cam-
era translation between consecutive frames is much smaller
than the distance from camera to the scene (e.g. in the case
of high altitude aerial video).

When none of the above conditions are met, the 3D
structure of the scene will produce significant parallax ef-
fects that cannot be ignored.

[Irani and Anandan, 1998] present a stratification of the
problem into scenarios with gradually increasing complex-
ity for the camera induced motion: 2D scenes where a sin-
gle 2D parametric transformation can stabilize the back-
ground, multi-planar scenes, with a small number of layers
of parametric transformations and 3D scenes. 3D scenes
are further divided into two categories: for dense paral-
lax, use a plane plus parallax decomposition, compute the
epipole, then look for points where the residual flow vio-
lates the epipolar constraint; for sparse parallax cases, the
location of the epipole cannot be determined reliably, there-
fore the authors propose the parallax rigidity constraint as
a way to determine whether two points belong to the same
object (stationary background or moving object). The pa-
per describes the individual techniques for each scenario.
The parallax rigidity constraint only provides a way to de-
termine whether two points belong to the same object (sta-
tionary background or moving object). It fails if there are
no stationary objects that generate parallax (e.g. for the
case of a moving object on a planar surface).

[Sawhney et al., 2000] describe an algorithm for inde-
pendent motion detection for sparse 3D scenes using both
view geometry and shape constraints. Their approach en-
forces shape constancy constraints over multiple frames.

[Ogale et al., 2005] consider three different classes of
independently moving objects: 3D motion-based cluster-
ing (similar to the epipolar constraint) for cases when the
direction of the image motion of the independently moving
object is different from the image motion of the station-
ary background induced by the camera ego-motion; ordi-
nal depth conflict or occlusion-structure from motion con-
flict for cases when there is a stationary object closer to the
camera than the independently moving object, and partially
occluding it; cardinal depth conflict for cases when another
source for determining structure is avaialable (e.g. stereo),
perform cardinal comparisons between structure from mo-
tion and structure from another source.

[Jung and Sukhatme, 2004] propose a probabilistic ap-
proach for moving object detection from a mobile robot
using a single camera. The ego-motion of the camera is
compensated using corresponding feature sets and outlier
detection, and the positions of moving objects are estimated
using an adaptive particle filter and EM algorithm. An in-
teresting aspect of this paper is that the algorithms have
been implemented and tested on three different robot plat-
forms in an outdoor environment: a robotic helicopter, Seg-
way RMP, and Pioneer2 AT.

Other approaches for independent motion detec-
tion look for objects that have non-uniform motion.
[Argyros et al., 1996]) proposes a method for the fast de-
tection of objects that maneuver in the visual field of a
monocular observer. [Nelson, 1991] presents two meth-
ods for independent motion detection. The first one is the
classical epipolar constraint. The second relies on the fact



Figure 2: Global parametric alignment method for MTI.

that the apparent motion of a fixed point due to smooth ob-
server motion changes slowly, while the apparent motion
of many moving objects may change rapidly. In both cases,
the qualitative nature of the constraints allows the methods
to be used with inexact motion information.

If a stereo sensor is available, additional constraints
can be used for detecting independent motion. In
[Argyros and Orphanoudakis, 1997]), independent motion
detection is formulated as robust parameter estimation ap-
plied to the visual input from a stereo camera. Depth
and motion measurements are combined in a linear model
whose parameters are related to the egomotion and the pa-
rameters of the stereo head. The robust estimation of this
model leads to a segmentation of the scene based on 3D
motion. [Talukder and Matthies, 2004] use stereo disparity
fields and optical flow fields to estimate egomotion, then
use predicted and observed flow and disparity to detect
moving objects.

[Agrawal et al., 2005] describe a system that detects in-
dependently moving objects from a mobile platform in real
time using a calibrated stereo camera. Image features are
detected and tracked through the images and these tracks
are used to obtain the motion of the platform. In the dispar-
ity space, two disparity images of a rigid object are related
by a homography that depends on the objects euclidean
rigid motion. The homography obtained from the camera
motion is used to detect the independently moving objects
from the stereo disparity maps.

3 Algorithm description
Detecting moving targets from a moving platform is

challenging because image motion is caused by the station-
ary background (due to camera motion) as well as indepen-
dently moving objects. An MTI algorithm needs to isolate
the image motion due to the independently moving objects
and ignore that due to the camera egomotion. The problem

is further complicated if the scene contains significant 3D
structure, since the 3D parallax can generate image motion
similar to that of independently moving objects.

Below we compare two algorithms for independent mo-
tion detection from a single moving camera and discuss
their relative strengths and weaknesses in section 4.

3.1 Global alignment
We use a classical algorithm [Burt et al., 1989] that

looks for residual differences after aligning frames with a
global parametric transformation (homography). It is well
suited for detecting small moving objects on a flat surface
or when camera motion is pure rotation. The method is il-
lustrated in Figure 2 and the main steps of the algorithm are
described below:

1. Register It+1 with It, that is find a global parametric
transformation M that best aligns the two images.

2. Use M to warp It+1 into Wt+1, the frame at time t+1
compensated for the dominant motion.

3. Compute the difference image Dt = |It −Wt+1|. If
the difference is above a threshold, label that point as
belonging to an independently moving object.

Figure 3 shows sample detection results of two walking
persons from about 45 meters altitude with a normal lens
(Field of View around 40 degrees horizontally). In this se-
quence the helicopter carrying the camera was hovering, so
the camera motion had no significant translational compo-
nent.

When the camera is translating close to a scene with
significant structure, the parallax induced by the static 3D
structures in the scene represents a challenge for this algo-
rithm. The next section discusses a method that can handle
such situations.



Figure 3: Sample frame from a video sequence recorded
with the CMU helicopter, showing the detection of the
two moving persons.

3.2 Ego-motion plus flow orientation
This method is better suited for scenes with significant

3D structure when the camera motion has a significant
translational component. The first step is to recover the
camera motion in 3D. Next, eliminate the image motion
due to the camera rotation (which is independent of the 3D
structure in front of the camera) and compute the residual
optical flow. This flow will be epipolar, i.e. all flow vec-
tors corresponding to the static background will intersect
at a common point (the epipole). The points in the image
where the flow vectors do not satisfy this constraint are la-
beled as independently moving.

The input consists of two frames from a calibrated video
sequence. The time separation between input frames could
be adjusted depending on the speed of the camera through
the environment, but for this discussion we will assume that
input frames are consecutive: It and It+1.

Camera calibration information is encapsulated in the
intrinsic parameter matrix K:

K =





fx 0 cx

0 fy cy

0 0 1



 ,

where fx, fy are the camera focal length in the horizon-
tal and vertical direction (in pixels) and cx, cy are the image
coordinates of the camera center.

The 3D camera motion between It and It+1 is estimated
using a visual odometry algorithm [Nister et al., 2006]. For
more robust visual odometry results, multiple cameras with
fixed relative geometry may be used. This increases the
total Field Of View of the system and the probability that
reliable features can be detected and tracked as the cameras
move through the environment. The output of the visual
odometry algorithm consists of the camera 3D rotation and
translation estimates (R and T ) over time.

Given two input frames It and It+1 and R, T that de-
scribe the camera motion between time t and t + 1, the

main steps of the algorithm are described below:

1. Eliminate the image motion component due to camera
rotation. This motion is independent of the 3D struc-
ture of the scene, and can be computed as a global
parametric transformation M = KRK−1, where K

is the camera matrix and R is the 3D rotation. Use M

to warp It+1 into Wt+1, the frame at time t+1 com-
pensated for camera rotation.

2. Compute optical flow between It and Wt+1. Since the
effects of the camera rotation have been eliminated,
this flow will be epipolar, i.e. all flow vectors corre-
sponding to the static background will intersect at a
common point (the epipole). We use the coarse-to-
fine approach for optical flow computation described
in [Bergen et al., 1992].

3. Compute the epipole location from the translation
component of the 3D camera motion and camera ma-
trix: e = KT

4. For every point where an optical flow vector has been
computed, compare its orientation with the epipolar
direction. If the difference is above a threshold, label
that point as belonging to an independently moving
object.

Figure 4 illustrates the main algorithm steps on a frame
from a sequence recorded from a helicopter. The camera
was pointing forward and pitched down 45 degrees, and the
helicopter was moving forward. The scene is mostly static,
except for two moving persons. The flow between It and
Wt+1 (step 2) is shown in the upper right part (only a subset
of the flow vectors is displayed for clarity). The flow vec-
tors that agree with the epipolar direction are colored green,
while the ones that don’t are colored red. These vectors are
assumed to correspond to independently moving objects.
The instantaneous detection map Dt is generated based on
the magnitude of the angular difference between the pre-
dicted (epipolar) and actual direction of the flow vectors.

3.3 System Implementation
The two algorithms have been implemented in C/C++,

and the code can be build on a general-purpose PC under
Windows or Linux Operating System. The optical flow
computation uses the Intel Performance Primitives library
for acceleration.

The computing platform for the aerial examples is a
Pentium-M 1.8GHz PC-104 computer, with a firewire card
for capturing video from a digital camera. Since the heli-
copter platform exhibits high vibration during flight, only
solid-state storage is reliable. A 4GB Flash Card holds
the Linux OS and the application, leaving about 2GB for
recording video for test purposes. The application captures
images from the firewire cameras and receives helicopter



Figure 4: 3D MTI method.

pose information over Ethernet from the navigation com-
puter. In data collection mode, it stores the video and meta-
data on the FlashCard. In live operation mode, the MTI al-
gorithm is executed and the detection results together with
a reduced resolution version of the input video are sent over
wireless Ethernet to a ground station for display.

For the ground vehicle examples, we used a general-
purpose PC to collect the video and vehicle metadata and
processed the sequence off-line.

4 Examples
In this section we present several examples of the output

obtained from the MTI algotrithm on sequences collected
in different scenarios.
4.1 Air vehicle scenario

We tested the MTI algorithm on multiple monocular
video sequences collected using the CMU helicopter at Ft
Indiantown Gap. The scenarios recorded so far include
people and vehicles moving in open areas, next to tree lines
or along roads in wooded areas, with the helicopter flying
at about 50m above the ground.

Figure 5 compares the output of the two methods. In this
sequence the helicopter is flying over a wooded area along
a dirt road. There are two moving objects in the scene, a
HMMWV and a person.

We show a few representative frames, and sample out-
put on each row in the figure. On the left is the input frame,
and two the right are the corresponding instantaneous de-
tection maps obtained with the two methods: the 3D MTI
method in the center and the global alignment method to
the right. Black corresponds to no detection, and bright
areas correspond to moving objects.

For the first frame (top row in Figure 5), the scene is a
flat field with no moving objects, and both methods pro-
duce the correct output (the solid black detection map in-
dicates no moving objects). The frame on the second row

contains a moving person which is detected by both algo-
rithms. Note that the global alignment method produces
a sharper definition of the moving object than the 3D MTI
method, due to the local support window used in the optical
flow computation.

In the third row, the scene has no moving objects, but
there is significant 3D structure (tall trees). The 3D MTI
algorithm is not sensitive to the static structure, while the
global alignment method generates false alarms (white re-
gions in the detection map corresponding to the tall trees).
Finally, the fourth row shows an example of 3D static struc-
ture and moving objects. In the output for the global align-
ment method (rightmost) the moving person and vehicle
are well defined, but there is also a significant response on
the tall trees, due to the parallax generated by the 3D struc-
ture of the scene. For the 3D MTI method (center), only the
person and vehicle are detected, there are no false alarms
on the trees.

Figure 6 shows sample output for two additional se-
quences. For each sequence, a representative frame is pre-
sented on the left, with the yellow arrows pointing to in-
teresting objects in the scene. The center image is the pro-
cessed frame with the bounding box for the tracked objects
overlaid. The image on the right is the MTI output; brighter
points correspond to regions with higher likelihood of be-
longing to independently moving objects. The moving per-
son and moving vehicle are detected in both examples (in-
dicated by the overlaid bounding box), while the tall trees
do not generate false alarms.

4.2 Ground vehicle scenario
We have also investigated applying the same 3D MTI al-

gorithm to sequences collected from a moving ground ve-
hicle. The ground vehicle case is more challenging than
the low-altitude aerial one since the distance to the closest
point in the 3D scene is smaller and therefore the parallax



Figure 5: Left: One frame from a helicopter sequence. Center: 3D MTI method Right: Global parametric alignment method.
See text for details.



Figure 6: Examples from two helicopter sequences (top row tree line sequence, bottom row road sequence). Left: one frame from
helicopter sequence; Center: Processed frame with bounded boxes of tracked objects overlaid. Right: MTI output for this frame.
See text for details.

Figure 7: XUV trajectory for the ground level MTI example.



Figure 8: Sample detection results for ground level MTI.
The red boxes denote image areas where independent
motion was detected.

effects are stronger.
Data was collected with a stereo head mounted on the

pan-tilt unit of an XUV, in the GDRS parking lot in Febru-
ary 2006. As the XUV drove along the trajectory shown
on the left side in Figure 7, several people moved in front
of the vehicle at distances ranging from 5 to 30 meters and
with speed from walking and up to running.

Camera motion over time was recovered using visual
odometry on both cameras in the stereo pair for increased
robustness. The right side of Figure 7 shows the trajec-
tory obtained from the vehicle INS system compared to the
trajectory recovered from visual odometry. Next, the 3D
MTI algorithm was applied to the left camera only. Figure
8 shows sample detections on a few frames from the se-
quence. The red overlay boxes indicate regions where the
image motion was determined to be inconsistent with the
camera motion through a static environment, and therefore
are labeled as independently moving objects.

5 Conclusion
We presented a system for independent motion detec-

tion from a moving platform in the presence of strong par-
allax and showed examples from two scenarios with strong
parallax: low-flying air vehicle and ground vehicle. The
system can use multiple MTI algorithms each best suited
for different operating conditions.

Since most of the test environments encountered so far
contain significant 3D structure which generates strong par-
allax effects, we have been using mostly the 3D MTI algo-
rithm described in section 3.2. Future work will address the
problem of automatic switching between MTI algorithms
based on terrain conditions and camera motion.
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